宁波大学

学术活动

甬江数学讲坛112讲(2020年第39讲)

发布日期:2020-09-23 作者:数学与统计学院 文章来源:未知  责任编辑:

报告题目:A $\sigma_2$ Penrose inequality for conformal asymptotically hyperbolic 4-discs

  人:韦韡 (上海数学中心  博士后)

报告时间:2020923  15:00  开始

报告地点:腾讯会议ID883 450 897

或点击链接入会:https://meeting.tencent.com/s/XCBaGtrBz9kW

报告摘要:In this talk, we consider conformal metrics on a unit 4-disc with an asymptotically hyperbolic end and possible isolated conic singularities. We define a mass term of the AH end. If the $\sigma_2$  curvature has lower bound $\sigma_2$ ≥ 32 , we prove a Penrose type inequality relating the mass and contributions from singularities. We also classify sharp cases, which is the standard hyperbolic 4-space H4 when no singularity occurs. It is worth noting that our curvature condition implies non-positive energy density. This is joint work with Fang, Hao.

报告人简介:韦韡,上海数学中心博士后。2012年本科毕业于河海大学,2019年在中国科学技术大学取得博士学位,2017-2019年访问美国爱荷华大学,2019年获得博士后创新人才计划。主要研究领域是几何分析与非线性偏微分方程,研究成果发表在 JFA, CVPDEIMRNJDE, CPAA等多个颇具影响力的期刊上.

 

上一条:中法联合学院联合大讲堂“旅行的意义”系列讲座第十七讲 下一条:阳明大讲堂第321讲:一本小册子 一场班主任聚会

关闭

无极3娱乐网址